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ABSTRACT: Metal−superoxo species are believed to
play key roles in oxygenation reactions by metalloenzymes.
One example is cysteine dioxygenase (CDO) that catalyzes
the oxidation of cysteine with O2, and an iron(III)−
superoxo species is proposed as an intermediate that
effects the sulfoxidation reaction. We now report the first
biomimetic example showing that a chromium(III)−
superoxo complex bearing a macrocyclic TMC ligand,
[CrIII(O2)(TMC)(Cl)]+, is an active oxidant in oxygen
atom transfer (OAT) reactions, such as the oxidation of
phosphine and sulfides. The electrophilic character of the
Cr(III)−superoxo complex is demonstrated unambigu-
ously in the sulfoxidation of para-substituted thioanisoles.
A Cr(IV)−oxo complex, [CrIV(O)(TMC)(Cl)]+, formed
in the OAT reactions by the chromium(III)−superoxo
complex, is characterized by X-ray crystallography and
various spectroscopic methods. The present results
support the proposed oxidant and mechanism in CDO,
such as an iron(III)−superoxo species is an active oxidant
that attacks the sulfur atom of the cysteine ligand by the
terminal oxygen atom of the superoxo group, followed by
the formation of a sulfoxide and an iron(IV)−oxo species
via an O−O bond cleavage.

Dioxygen activation at transition metal centers is of current
interest in biological and catalytic oxidation reactions.1

Oxygen-coordinating metal intermediates, such as metal−
superoxo, −peroxo, −hydroperoxo, and −oxo species, are
frequently invoked as plausible oxidants in the oxidation of
organic substrates.1 Among the metal−oxygen adducts, metal−
superoxo species have attracted much attention recently, since
the intermediates have been implicated as reactive species in
the C−H bond activation of substrates by nonheme iron (e.g.,
isopenicillin N synthase and myo-inositol oxygenase)2 and
copper (e.g., dopamine β-monooxygenase and peptidylglycine-
α-amidating monooxygenase)3 enzymes. In biomimetic studies,
iron(III)−superoxo species have been proposed as a potent
oxidant in the C−H bond activation of hydrocarbons by
mononuclear nonheme iron(II) complexes.4 In the case of
copper(II)−superoxo species, a number of synthetic copper-
(II)−superoxo complexes have shown reactivities in ligand
oxidation and the oxidation of organic compounds with weak
C−H, O−H, and N−H bonds.5

Cysteine dioxygenase (CDO), which is a mononuclear

nonheme iron enzyme that contains an iron(II) center bound

by three histidine groups in a facial orientation, catalyzes the

oxidation of cysteine with O2 to yield cysteine sulfinic acid (i.e.,
S-oxidation).6 An iron(III)−superoxo intermediate is proposed
as an active oxidant that attacks the sulfur atom of the ligand
with the terminal oxygen atom of the superoxo group, followed
by the O−O bond cleavage to form an iron(IV)−oxo species
(Scheme 1).6,7 As a chemical model of CDO, Limberg,
Goldberg, de Visser, and their co-workers reported exper-
imental and computational studies on the iron(II)-mediated S-
oxidation by O2,

8 in which iron(III)−superoxo species have
been proposed as an active oxidant that effects the S-oxidation
reactions. However, intermediacy of the iron(III)−superoxo
species and the formation of an iron(IV)−oxo product in the S-
oxidation reactions (Scheme 1) have never been observed in
both enzymatic and biomimetic reactions.

Mononuclear chromium(III)−superoxo complexes have
been reported by Bakac and co-workers as chemical models
of O2 activating metalloenzymes and as active oxidants in the
oxidation of substrates.9 Very recently, we also reported the
synthesis and characterization of an end-on chromium(III)−
superoxo complex, [CrIII(O2)(TMC)(Cl)]+ (1, TMC =
1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), and
highlighted its reactivity in hydrogen atom (H-atom)
abstraction reactions.10,11 This study provided the first direct
experimental evidence that metal−superoxo species are able to
abstract a H-atom from external substrates. However, to the
best of our knowledge, metal−superoxo complexes have never
been employed in oxygen atom transfer (OAT) reactions (e.g.,
S-oxidation). In this communication, we report that 1 is able to
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transfer its oxygen atom to organic substrates (e.g., PPh3 and
sulfides), yielding the corresponding oxygenated products and a
chromium(IV)−oxo complex, [CrIV(O)(TMC)(Cl)]+ (2), as
shown in Scheme 2. An electrophilic character of 1 is also

demonstrated in the oxidation of para-substituted thioanisoles.
Thus, the present results report a chemical model of CDO and
are discussed in light of the role of an iron(III)−superoxo
intermediate in the oxidation of cysteine in CDO (see Schemes
1 and 2).
The Cr(III)−superoxo complex, [CrIII(O2)(TMC)(Cl)]+

(1), was generated by bubbling O2 through a solution of
[CrII(TMC)(Cl)]+ in CH3CN at −10 °C, as reported
previously.10 The intermediate 1 was metastable so that it
could be used in reactivity studies under stoichiometric
conditions (e.g., ca. 5% decay for 1 h at −10 °C). Treating 1
with PPh3 produced OPPh3 in quantitative yield. The source of
the oxygen incorporated into the product was determined to be
the superoxo group by carrying out an isotope 18O-labeling
experiment; 18OPPh3 was produced in the reaction of 18O-
labeled 1 (1-18O) prepared using 18O2 (Scheme 2; also see
Supporting Information (SI), Experimental Section for reaction
conditions and Figure S1). Kinetic studies of 1 with PPh3 in
CH3CN at −10 °C exhibit a first-order decay profile (Figure 1a,
inset), and pseudo-first-order rate constants increased propor-
tionally with the PPh3 concentration, giving a second-order rate
constant (k2) of 8.4 × 10−1 M−1 s−1 (Figure 1b). The rates were
dependent on reaction temperature, from which a linear Eyring
plot was obtained between 243 and 273 K to give the activation
parameters of ΔH⧧ = 44 kJ mol−1 and ΔS⧧ = −74 J mol−1 K−1

(Figure 1c).
We then examined the reactivity of 1 in the oxidation of

sulfides in CH3CN at −10 °C. 1 disappeared upon addition of
thioanisole with a first-order decay profile (Figure S2). The
pseudo-first-order rate constants increased proportionally with
the concentration of thioanisole (k2 = 5.2 × 10−3 M−1 s−1)
(Figure 2a).12 The reactivity of 1 was further investigated with
para-substituted thioanisoles, para-X-Ph-SCH3 (X = OH, CH3,
H, Cl), to investigate the electronic effect of para-substituents
on the oxidation of thioanisoles by 1 (Figure 2a). A Hammett
plot of the second-order rate constants vs σp

+ gave a ρ value of
−3.3 (Figure 2b; Table S1). Such a negative ρ value indicates
the electrophilic character of the superoxo group of 1 in OAT
reactions, as frequently observed in the sulfoxidation of
thioanisoles by high-valent metal−oxo complexes of heme
and nonheme ligands.13 In addition, we observed a good linear
correlation when the rates were plotted against oxidation
potentials (Eox) of thioanisoles (Figure 2c; Table S1). Further
mechanistic information needs to be obtained to clarify the
mechanism of the oxygenation of sulfides by metal−superoxo
species (e.g., direct oxygen atom transfer vs electron transfer
followed by oxygen atom transfer).13,14 The product analysis of
the reaction solution of the oxidation of thioanisole by 1

revealed that methyl phenyl sulfoxide was produced with a high
yield (∼70% based on the amount of 1 used), and the source of
oxygen in the sulfoxide product was found to be the superoxo
ligand of 1 on the basis of an 18O-labeling experiment
performed with 1-18O (see SI, Experimental Section for
reaction conditions and Figure S3).
Interestingly, we have observed the formation of a Cr(IV)

O complex, [CrIV(O)(TMC)(Cl)]+ (2), as a product in the
OAT reactions by 1 (see Scheme 2).15 This intermediate was
relatively stable in CH3CN at −10 °C (t1/2 ∼40 min) and did
not react with PPh3 and sulfides under the conditions.
Therefore, we were able to characterize 2 with various
spectroscopic methods, such as UV−vis spectrophotometer,
cold spray ionization mass spectrometry (CSI-MS), electron
paramagnetic resonance (EPR) spectroscopy, and resonance
Raman (rRaman) spectroscopy, and the structure of 2 was
determined by X-ray crystallography. The UV−vis spectrum of
2 exhibits characteristic bands at 501 (ε = 60 M−1 cm−1), 603
(ε = 90 M−1 cm−1), and 960 nm (ε = 30 M−1 cm−1) (Figure
3a). The CSI-MS of 2 shows a prominent ion peak at a mass-
to-charge ratio (m/z) of 359.2 (Figure 3b), whose mass and
isotope distribution pattern correspond to [CrIV(O)(TMC)-

Scheme 2

Figure 1. (a) UV−vis spectral changes of 1 (0.5 mM) obtained at 90 s
intervals upon addition of PPh3 (20 equiv to 1, 10 mM) in CH3CN at
−10 °C. The upper inset shows the time course of the decay of 1
monitored at 331 nm. The lower inset is the expanded region of 400−
1100 nm (×7). (b) Plot of kobs against the concentration of PPh3 to
determine a second-order rate constant at −10 °C. (c) Plot of second-
order rate constants against 1/T to determine activation parameters
for the reaction of 1 and PPh3.
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(Cl)]+ (2) (calculated m/z of 359.2). When the reaction was
carried out with 1-18O (vide supra), a mass peak corresponding
to [CrIV(18O)(TMC)(Cl)]+ (2-18O) appeared at a m/z of 361.2
(calculated m/z of 361.2) (Figure 3b, inset). The shift in two

mass units on substitution of 16O with 18O indicates that 2
contains one oxygen atom in it. 2 is EPR silent at 4.3 K, and the
effective magnetic moment of 2 (μeff = 3.3 μB at −20 °C)
indicates the spin state of S = 1 for the CrIV ion. The rRaman
spectrum of 2-16O (32 mM), measured in CH3CN/CH2Cl2 at
−20 °C with 407 nm laser excitation, exhibits an isotopically
sensitive band at 874 cm−1, which shifted to 837 cm−1 in 2-18O
(Figure 3a, inset). The observed isotopic shift of −37 cm−1 with
18O-substitution is in good agreement with the calculated value
(Δνcalc = −38) for the Cr−O diatomic harmonic oscillator. The
observed Cr−O frequency at 873 cm−1 is lower than those
found in [CrIV(O)(TptBu,Me)(pz′H)]+ (905 cm−1)16 and
[CrIV(O)(TPP)] (1025 cm−1).17

Single crystals of 2-Cl·CH3CN·H2O were grown from
CH3CN/acetone/diethyl ether at −40 °C and contained two
crystallographically independent but virtually identical cations
in the asymmetric unit (denoted “A” and “B”). These two
cations are mononuclear chromium−oxo complexes in a
distorted octahedral geometry (Tables S2 and S3), as shown
in Figure 4 for 2A. Notably, the Cr1−O1 bond length of 2A

(1.698(3) Å) is longer than those of other Cr(IV or V)
complexes, such as [CrIV(O)(TptBu,Me)(pz′H)]+ (1.602 Å),16

[CrIV(O)(TPP)] (1.572 Å),17 [CrV(O)(salen)]+ (1.545 Å),18

and [CrV(O)(TMC)(OCH3)]
2+ (1.604 Å).11 The relatively

long Cr−O bond distance of 2 is consistent with the low
frequency of the Cr−O stretching vibration obtained in the
rRaman measurement (vide supra). In addition, intermolecular
hydrogen bonding interactions in crystalline environments are
proposed to elongate the Cr−O bond distance (Figure S4), as
observed in Fe−O(H) complexes using the secondary
coordination sphere.19 All four N-methyl groups of the TMC
ligand in 2 point away from the oxo group, as observed in the
crystal structures of [CrV(O)(TMC)(OCH3)]

2+ and [FeIV(O)-
(TMC)(CH3CN)]

2+.11,20

In conclusion, we have shown recently that a Cr(III)−
superoxo complex, [CrIII(O2)(TMC)(Cl)]+ (1), is a biomi-
metic oxidant for the metal−superoxo species proposed in C−
H bond activation reactions by nonheme iron and copper
enzymes. In the present study, we have demonstrated that 1 is
able to conduct OAT reactions with an electrophilic character.
We have also shown the formation of a chromium(IV)−oxo
complex, [CrIV(O)(TMC)(Cl)]+ (2), in the OAT reactions by
1. Thus, the present study provides the first biomimetic
example demonstrating that a metal(III)−superoxo complex
possesses an electrophilic character and is able to conduct OAT

Figure 2. Reaction of 1 with para-substituted thioanisoles, para-X-Ph-
SCH3 (X = OH, CH3, H, Cl), in CH3CN at −10 °C. (a) Plots of kobs
against the concentration of para-X-Ph-SCH3 (X = OH (red), CH3
(green), H (black), Cl (blue)). (b) Hammett plot of log krel against σp

+

of para-substituted thioanisoles. The krel values were calculated by
dividing k2 of para-X-Ph-SCH3 by k2 of thioanisole. (c) Plot of log k2
against Eox for the oxidation of para-substituted thioanisoles.

Figure 3. (a) UV−vis spectra of 2 (red line) and 1 (black line, for
comparison) in CH3CN at −10 °C. Inset shows rRaman spectra of
2-16O (red line) and 2-18O (blue line); solvent bands are labeled with
“s”. Similar but much more intense signals were obtained for 2 which
was prepared by reacting [CrII(TMC)(Cl)]+ with PhIO (see Figure
S6). (b) CSI-MS of 2. Inset shows isotope distribution patterns for
2-16O (lower) and 2-18O (upper).

Figure 4. Molecular structure of one of crystallographically
independent molecules of [Cr(O)(TMC)(Cl)]+ (2). (a) ORTEP
plot of 2A with 30% probability thermal ellipsoid. Hydrogen atoms are
omitted for clarity. (b) Space-filling representation of 2A, derived from
the single crystal structure determination. Selected bond lengths (Å)
and angles (°): Cr1−O1 1.698(3), Cr1−Cl1 2.3830(11), O1−Cr1−
Cl1 176.82(9).
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reactions. In addition, a metal(IV)−oxo complex is formed as a
product when the terminal oxygen atom of the superoxo group
in the metal(III)−superoxo complex is transferred to organic
substrates in the OAT reactions (see Schemes 1 and 2). Further
studies, including density functional theory (DFT) calculations,
will provide insights regarding the mechanism of the oxygen
atom transfer from metal−superoxo species to organic
substrates in enzymatic and biomimetic reactions.
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